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Abstract-The problem considered involves two concentric, smoothly contacting rings under exter
nal pressure. The outer ring is initially circular but the inner ring has a localized initial imperfection
which causes a small section of the ring to be detached from the outer one. The pressure is applied
externally but also in the cavity formed by the imperfection. The formulation used is general enough
to allow for large deflections. The material of both rings is assumed to be linearly elastic. The
nonlinear response of the structure was found to be characterized by a limit load type of instability.
The mode of collapse and the limit load art: shown to depend on the geometric characteristics of
the two rings and those of the initial imperfection.

INTRODUCTION

This paper deals with the response and stability of two concentric. smoothly contacting.
thin, clastic rings under external pressure. The outer ring is circular but the inner one has
a small localized imperfection as shown in Fig. I. The pressure is applied to the outer ring
as well as in the cavity formed by the imperfection. The main objective of this study is to
illustrate how the presence of the outer ring increases the capacity of the inner one to resist
collapse and also how the mt:chanism of instability and the post buckling response are
altered.

The particular pressure loading udopted and the type of imperfections used are ones
which approximately represent those encountered in the situution of a propagating buckle
engaging a slip-on buckle arrestor described by Kyriakides and Babcock (1980). Similar
conditions were also described in the problem of a propagating buckle which can affect
long cylindrical shells used as liners for relatively stiff cylindrical cavities (see Kyriakides.
1986).

The complexity of the problem can be appreciated by reviewing a series of published
studies dealing with the response and stability of rings confined in rigid contacting cavities.
Among others. Piun and Bucciarelli (1967) and Zagustin and Herrmann (1967) considered
a confined ring loaded by a uniform parallel load. Bucciarelli and Pian (1967) and EI
Bayoumi (1972) considered the same geometry under thermal loading. Kyriakides and
Youn (1984) and Yamamoto and Matsubara (1981) addressed similar problems but under
pressure loading. More recently Bottega (1988) addressed the case of a confined ring acted
upon by a point radial load. The main conclusions from these studies are that the ring has
a very stiff prebuckling response which is characterized by a limit load and that the limit
load is strongly influenced by initial geometric imperfections.

This study difTers from these works in that it considers the confining structure to be a
deformable ring. The problem is formulated and solved through beam kinematics which
allow for large deflections but shear deformations are neglected. The problem is solved
numerically and the prebuckling and large deflection postbuckling responses are calculated.

PROBLEM FORMULATION

We consider two concentric. thin-walled. smoothly contacting rings of radius Rand
wall thicknesses to for the outside and (( for the inside ring. The inside ring has a small
initial geometric imperfection which causes a length of 2S to be detached from the outer
ring as shown in Fig. I. The imperfection is generated numerically through a process
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Fig. t. Problem geometry. (a) Doubly symmetric case. (b) Singly symmetric case.

described in the next section. Relative to the rectangular coordinate system (x-y), shown
in Fig. 2, the imperfection geometry is defined through

(I)

where 6" is the initial amplitude of the imperfection crown point which is a prescribed
parameter (6" = R - :(0, 6,,)]. The imperfection is symmetric about y '= O.

The two rings are pressurized externally with hydrostatic pressure P which is also
applied in the cavity formed between them due to the initial geometric imperfection. We
seek to establish the response of the assembly due to the applied external pressure.

Two cases are considered; the first, shown in Fig. 1a, has two planes of symmetry and
the second, shown in Fig. Ib. has one plane of symmetry. It is assumed that during
deformation the respective symmetries are maintained.
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Fig. 2a. Deformed geometry of doubly symmetric case.
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Fig. 2b. Deformed geometry of singly symmetric case.
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Fig. 2c. Equilibrium of forces of ring clement.

The problem is formulated through a class of small strain but finite rotation kinematics
(see Reissner, 1972) in which the transverse shear deformations are neglected as is customary
in the analysis of thin-walled structures. In addition to nonlinear kinematics the nonlinearity
of changing contact length bctween the two rings must be addressed. In what follows the
formulation for the doubly symmetric case is discussed in detail followed by a brief dis
cussion of the main difference of this formulation from that of the singly symmetric case.

We identify the point of separation of the two rings by the angle cx· and the detached
length by .1'. as shown in Fig. 2. We define the current configuration by the coordinates (x,
y), of the respective ring mid-surface, and by the angle 0 between the normal to the ring
mid-surface and the x-axis.

The axial force intensity N, the shear force intensity Q and the bending moment
intensity M acting on the cross-sections of the rings are defined (positive sense) in Fig. 2c
(for convenience we assume the two rings to have unit width).

In the analysis the two rings are separated as shown in Fig. 3 and the variables are
identified by the subscript "0" for the outside ring and "I" for the inside ring. Based on
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Fig. 3. Free body diagram of two rings.
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the above. the field equations for the two rings can be expressed as follows:

- (I +11,) sin 0,.

dr
-d', = (I + II,) cos 0, •

S,

dO, dU,
=--1(

ds; ds, ,.

dN, dO,=Q, .....
ds, ds,

i = 0.1

rrR
O~s,~~ (2)

dQ,

ds,

dO,
--N (I +c,)P,.
ds, '

dM,
I

= (1+e.)Q,.
( .1',

II and I( rcpn:sent the membrane and bending strains in the rings and s is a measure of
length along the undeformed ring mid-surface. dl/ids is the initial curvature. It has a value
of 1/ R except in the region of the impertcction where the value is obtained from (I). As a
first stcp we assumc both rings to be linearly elastic (moduli E,). As a result the following
constitutive equations arc appropriate:

iV, = E,I,C,.

i = 0.1. (3)

For analytical convenience the structure is separated into three sections. AB, Be and DB
identitied in the free body diagram shown in Fig. 3. Equations (2) and (3) arc used to
analyze each section. For section AB Po = 0 and for section DB PI = P. Be is the section
over which the two rings arc in contact. A contact pressure, Pc(.\·o). develops between the
two rings in this section. In addition a concentrated contact force Qc develops between the
two rings at the point of separation B.

Over the section of contact the two rings have the same displacements (i.e. same x. y
and 0) and the same curvature. As a result

(4)

and

(5)

where

Simple manipulations of eqns (I) lead to the following expression for the contact pressure
Pc:

(6)
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(7)

The point shear force Q< acting at B can be expressed in tenns of other variables as
follows:

Q< = _1_ {Ng sin (J* - m [N? sin (J* +PLvtcos (J* + (x~ - xt) sin (J*Jl} (8)
(l+m)

where the superscript ( )0 refers to values at 5. = 0 and the superscript ( )* refers to values
at 5j = 51.

Thus for the section BC Po in (2) is given by Po = P - Pc(.~o). Once the solution for
the outer ring is known the variables M(. N1, Q(. and E.'l can be obtained from (4), (7), (5)
and (3).

Boundary conditions
For the outer ring:

(nR) (nR) n (nR)Yo(O) = 0, 00 (0) = 0, Qo(O) = 0, Xo . 2 = 0, 00 T = 2: ' Qo T = o.
(9)

Because this section is analyzed in two parts (AB and BC) at So = s;'; we require continuity
of xo , Yo, 00 , No and Mo. The shear experiences a jump due to the presence of the
concentrated force Qc. Thus

( 10)

For the inner ring:

( Ila)

where Ll will be the prescribed variable in the incremental solution procedure we will adopt.
At point B the contact condition requires that

(II b)

and

Sr and s~ are related as follows:

(12)

The membrane strain el for this section can be obtained from (3) and (7).
The problem with the single plane of symmetry (Fig. Ib) can be analyzed through the

same equations by changing the domain of So to

5~ ~ So ~ nR.
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The boundary conditions at So = rrR become

yo(nR) = 0, 0o(rrR) = rr and QoCrrR) = o. (13 )

In the numerical analysis of this problem the point So = rrR was kept fixed thus in addition
to (13)xo(rrR) = -R.

Initial imperfection
For cases in which the outer ring is rigid, the response and stability of the inner ring

were shown to be strongly influenced by the presence of small initial localized geometric
imperfections (see Kyriakides and Youn, 1984 for pressure loading: Bucciarelli and Pian.
1967 for thermal loading). Motivated by these results. and by the practical aspects of the
buckle arrestor problem mentioned in the Introduction. a localized initial imperfection was
introduced to the problem in the fashion shown in Figs Ia and I b. The geometry of the
imperfection was obtained by solving the following special case of the problem. The outer
ring was assumed to be rigid and the inner ring to be inextensional and in perfect smooth
contact with the outer ring. A sequence of buckled configurations were obtained numerically
following the procedure described by Kyriakides and Youn (1984). Such a sequence or
configurations and the corresponding pressure-detached length responses are shown in
Fig.4.

Such configurations with relatively small values of crown displacement (t\o) and
assumed to be initially unstressed were used in the analysis presented as initial imperfections
by representing their geometry through {.t(SI. t\o). J~(SI' t\o). 1)(.1'1. t\o}}.

NumericalsolutiO/l
The nonlinear differential equations for sections AB, Be and DB with the appropriate

boundary conditions were solved numerically. The differential equations were discrctized

2.,
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Fig. 4a. Pn:ssure-dctached length response of initially perfect ring in a rigid cavity.

6./R .025
050
.075
090

Fig. 4b. Deformed configurations corresponding to crown displacements indicated in Fig. 4a.
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through a forward difference scheme which involved I, J and K difference intervals for
AB, BC and DB, respectively. The discretization lead to 6(l+J+K) nonlinear algebraic
equations. The compatibility relationship (12) was added to this assemblage.

The nonlinear equations were solved iteratively using the Levenberg-Marquardt
algorithm as modified by Powell (1970). For a system of nonlinear algebraic equations
f(x) = 4J the algorithm is given by

where

Xn is the current, known, approximate value for the unknown vector x and A.n is a scalar.
Unlike Newton's method, this particular algorithm allows the use of an initial guess

to the solution, x I> which is not required to be close to the actual solution x. The algorithm
is a combination of the method of steepest descent and Newton's method. The first converges
linearly but can work even with a relatively bad initial guess. The second converges quad
ratically but requires a good initial guess. Thus, by choosing the value of An judiciously the
user can use primarily the method of steepest descent initially and primarily Newton's
method closer to the solution. A methodology for selecting A.n is described by Powell (1970).

One of the major challenges of this class of problems is the treatment of the changing
domain for the three sets of differential equations (contact problem). This was addressed
by letting the length of the three sectors adjacent to point B in the difference scheme be
unknown. In addition the pressure loading P was Icft unknown and the crown displacement,
L\, of the inside ring was prescribed incrementally. If, after convergence, the lengths of these
sectors arc found to bc "Iargc" then another sector is gencrated by adding onc more
difference point. If their lengths are found to be "small" then the domain is decreased by
subtracting a point. This scheme was found to lead to smaller discretization errors and to
etlicient execution.

In the formulation presented, a constant pressure P was assumed to act in the cavity
formed by the initial imperfection and the outer ring. It was found that pressure loading
could only be supported if the initial length over which it was applied was larger than the
domain of the cavity prescribed through (I). This type of behavior was also observed for
other loads in the works of Pian and Bucciarelli (1967), Zagustin and Herrmann (1967)
and Bottega (1988). This problem can be treated by allowing enough flexibility in the
numerical algorithm so as to allow the required change in the problem domain. However,
the correct detached length of the initial configuration can also be found from a small
deflection analysis.

RESULTS AND DISCUSSION

The major characteristics of the problem can be illustrated through an example. The
two rings are assumed to have the same Young's modulus, E, and the ratio of their thickness
is assumed to be to/tl = V3 and R/fl = 17.9. The geometric imperfection used had an
amplitude of L\o = 0.07SR. Both the doubly symmetric as well as the singly symmetric cases
were considered. Figures Sa and Sb show sequences ofcalculated equilibrium configurations
for the two cases. Equilibrium configurations up to the one in which the crown point
touches the opposite wall were calculated for these cases.

Figure 6a shows a plot of the pressure as a function of the crown displacement, and
Fig. 6b shows a plot of the pressure against the detached length. (All variables are suitably
normalized.) Clearly the structure is characterized by a limit load instability. The maximum
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Fig. Sa. Sequence of calculated response configurations for doubly symmetric case [(toil,) \ 3}.

Fig. Sb. Sequence of cakulaled response configurations for singly symmetric case [(t"il,) \ JI.

pressures (I'd reached in the two cases arc as follows:

Singly symmetric case
Doubly symmetric case

0.67
0.62

Pr~ (R)l
I: 'I

0.33
0.36

Thus, in this case the structure has the tendency to deform and collapse in the doubly
symmetric mode. Following the limit load, the structure experiences a sharp drop in the
load-bearing capacity. The minimum pressures Pm' reached in the postbuckling regime,
are also given above. The buckling pressure (normalized) of the inner ring without the
reinforcement of the outer one is 0.25; thus the beneficial effect of the outer ring on the
stability of the inner one is obvious.
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Fig. 6a. Pressure-crown displacement response.
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Fig. 6b. Pressure-detached length response.
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The crown displacement monotonically increases during the whole process. It was thus
a suitable variable for controlling the incremental solution procedure used. By contrast, the
detached length decreases for most ofthe prebuckling part of the response. Close to the limit
load it starts increasing with pressure and continues to increase monotonically following the
maximum pressure. The characteristics described above are common to both the singly and
doubly symmetric cases.

The initial detached length of the imperfection used can be found from Fig. 4a to be
SfR = 0.349. The initial detached lengths acceptable to the solution procedure used were
srIR = 1.045 and 0.912 for the singly and double symmetric cases, respectively, which
demonstrates the initial jump in st exhibited by the solution and mentioned in the previous
section.

Figure 7 shows plots of the point contact force, Q<. which develops between the two
rings at the point ofseparation B (see Fig. 3). Figure 8 shows the distribution of the contact
pressure P< over the length for which the two rings are in contact for different values of the
crown displacement ~ (doubly symmetric case). At the early stages of deformation, when
the section in contact has nearly constant curvature, Pc varies by a very small amount over
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Fig. 7. Contact force at separation point as a function of crown displacement.
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Fig. 8. Contact pressure between two rings for different values of drown displacement.
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the length. At the latter stages of defonnation the curvature of this section varies over the
length: this produces some variation in Pc over the length in contact.

The response of the composite structure is strongly influenced by the stiffness of the
outer ring. This is demonstrated in Figs 9a and 9b where the pressure-crown displacement
and pressure-detached length responses are plotted for various thickness ratios (tol II)

for the doubly symmetric case. The initial imperfection used again had an amplitude of
t1 0iR = 0.075. The value of the limit load is seen to strongly increase with lolt,. In the case
of loll, ==~ the outer ring can be viewed to be almost rigid compared to the inner one.
Thus the corresponding limit pressure is the highest possible for this imperfection. As the
thickness ratio decreases the maximum pressure is reduced. In addition. the prebuckling as
well as the postbuckling responses have smaller absolute slope. When the ratio of lol t l is
small the responses do not have a limit load as for example lolll = 0.4. This is reminiscent
of the response of a single ring under external pressure. The outer ring does. however, still
have a stiffening effect as can be seen by comparing the case of lolll = 0.4 and the case with
to = O.
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Fig. 9h. Prcssurc-d<:ta~hcd length r<:sponscs for various ring thi~kncss ratios.
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The main features of the responses shown in Fig. 9 are the same as those of the case
with toltt == ;)3 described earlier. However we observe that the initial jump in detached
length (difference between sand sf at P ;::; 0) depends on the ratio of toltl'

The same geometries were reconsidered through the singly symmetric formulation.
The results are shown in Figs lOa and lOb. The main features of these responses are similar
to those presented in Fig. 9. However the limit loads obtained for the two cases are different.
This difference is demonstrated more clearly in Fig. II where the calculated limit pressure
PL is plotted against toltl for the two cases. For tolt l > 2.5 the limit loads from the singly
symmetric formulation are lower. For toltl < 2.5 the converse is true. It is thus concluded
that for lower values of tolt l the composite structure will deform and collapse in the doubly
symmetric mode shown in Fig. 5a. For high values of tolt l the structure will follow the
singly symmetric collapse mode as shown in Fig. 5b. It is expected that the value of the
transition thickness ratio depends also on the imperfection amplitude.

The effect of the imperfection amplitude 6 0 on the calculated response is shown in Fig.
12a and (2b. Smaller values of 6 0 result in stiffer responses with higher limit loads. In

o .2 4 .6 8 1.0
-I:>IR

Fig. IDa. Pressure-crown displacement responses for various ring thickness ratios.
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Fig. lOb. Pressure-detached length responses for various ring thickness ratios.
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Fig. 13. Limit pressure as a function of imperfection amplitude.
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Fig. 14. Pressure-detached length responses for various Rill ratios.

addition, the slope of the prebuckling part of the pressure-detached length response changes
drastically with ao as demonstrated in Fig. 12b. For very small values of ao the response
is seen to develop an unusual loop. The values of the limit loads obtained for different
initial imperfection amplitudes for the doubly and singly symmetric cases are compared in
Fig. 13. The latter yields consistently higher limit pressures. However, we observe that the
difference between the two sets of results decreases for smaller values of ao•

Some insight as to the effect of axial rigidity of the inner ring on the observed response
can be obtained from the results shown in Fig. 14. The pressure-detached length response
for various Rill values are shown. The thickness ratio 10 111 and the initial imperfection were
kept constant. It is observed that the adopted nondimensionalization of the variables is not
totally adequate. This is due to the fact that the axial rigidity of the inside rings varies with
Rill' For larger values of Rill the effect of membrane forces and deformations is small in
comparison to the bending ones. This effect increases for lower values of Rill, The major
impact of the axial rigidity on the response occurs in the slope of the prebuckling path. For
bigger Rill values the initial slope is positive (see results for inextensional case in Kyriakides
and Youn. 1984). For smaller Rill values the initial slope is negative. In spite of these
differences the limit pressure remains nearly proportional to (RI11)J.

CONCLUSIONS

The paper addresses the problem of two concentric smoothly contacting rings under
external pressure. The inner ring is initially partially detached from the outer one over a
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small section. The problem was formulated through a "large deflection" set of kinematics
and solved numerically. The solution procedure had to address the rather complex contact
problem which develops between the two rings.

The presence of the outer ring has in general a stiffening effect on the response of the
structure and leads to higher instability pressures. These characteristics are caused by the
more complex equilibrium configurations to which the constrained inner ring must conform.

If the outer ring is relatively compliant (thin) the two rings deform in a doubly
symmetric fashion similar to the one followed by an unconfined ring under external pressure.
Beyond a certain deformation the composite structure experiences a substantial loss of
stiffness but retains its load-bearing capacity.

When the relative stiffness of the outer ring is increased the response of the composite
structure becomes stiffer but the nature of the instability changes to a limit load. As a result.
beyond the limit load the structure loses a substantial part of its pressure-bearing capacity.
The limit pressure is strongly related to the relative stiffness of the two rings and to the
geometry of the initial imperfection. For even higher outer ring stiffnesses the preferred
mode of deformation switches to one which has only one plane of symmetry.

The formulation and solution procedures presented can easily be modified to handle
alternative loadings of the two rings and/or inelastic ring materials.
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